

AERODYNAMICS AND ACOUSTICS OF FANS

- RECENT ADVANCES AND OPEN ISSUES -

Prof. Dr.-Ing. Th. Carolus

Steinbeis Transfer Center FLOWTRANS, Netphen, Germany (formerly University of Siegen, Department Mechanical Engineering)

Steinbeis-Transferzentrum FLOWTRANS

Boing 747-400 with Rolls-Royce RB211 1989 - Ul -ip

Advanced Fan Design: Pratt & Whitney PW 1000G geared turbofan, 2016

https://www.forbes.com, https://en.wikipedia.org/wiki/Pratt_%26_Whitney_PW1000G

Steinbeis-Transferzentrum FLOWTRANS

- 3:1 reduction gears for the fan → each engine element operates at optimal speed (4,000–5,000 rpm for the fan and 12,000–15,000 rpm for the spool, the high-pressure spool spinning at more than 20,000 rpm)
- Increased efficiency and reduced noise
- E.g. for Airbus A320neo

Advanced Fan Design: Pratt & Whitney PW 1000G geared turbofan, 2016

https://www.forbes.com, https://en.wikipedia.org/wiki/Pratt_%26_Whitney_PW1000G

Steinbeis-Transferzentrum FLOWTRANS

- 3:1 reduction gears for the fan → each engine element operates at optimal speed (4,000–5,000 rpm for the fan and 12,000–15,000 rpm for the spool, the high-pressure spool spinning at more than 20,000 rpm)
- Increased efficiency and reduced noise
- E.g. for Airbus A320neo

Small table fans: Design by Peter Behrens, manufactured by AEG, 1908/1909

Pinakothek der Moderne, München

From Jet Engine Fan to Diesel Engine Cooling Fan

D. Arnold, Fa. Hägele, Schorndorf 2024

Maschinenfabrik Hohenzollern, Düsseldorf-Grafenberg (from: Rudolf Vogdt: Pumpen, Hydraulische und pneumatische Anlagen, G. J. Göschen'sche Verlagshandlung 1906)

Part 1:

Numerical flow simulation as the third pillar of (fan) aerodynamics

8 N24 124 A

Classification of flow simulation methods relevant for industrial application

Navier-Stokes Equations - Numberphile
YouTube · Numberphile · 27 Aug 2019

Comparison: RANS- and LES-predicted flow field

0.4

0.2

-0.5

-0.7

H. Reese, University Siegen and University Tokio, 2007

Classification of flow simulation methods relevant for industrial application

<u>"BOTTOM-UP"</u> Solving "mesoscopic" Boltzmann equation to predict macroscopic fluid dynamics

- Particle movement and collisions with particle distribution functions (PDF).
- From PDFs the macroscopic hydrodynamic quantities are obtained.
- Naturally transient and for compressible fluids
- Very large eddy simulation (VLES) turbulence modelling.
- Resolves unsteady turbulent flow field and sound field simultaneously

LBM-predicted flow field: Three-dimensional, unsteady, fully turbulent

T. Zhu, M. Sturm, University Siegen 2016

LBM-predicted flow field in the vicinity of an airfoil trailing edge

F. Manegar, University Siegen 2018

Centrifugal fan

Streamlines from experimental oil paint method

from LBM

R. Schäfer, Technischen Universität Kaiserslautern, 2021

Classification of sound prediction methods

Classification of sound prediction methods

LBM-predicted tonal sound from a blunt airfoil trailing edge

K. Stahl, École de Technologie Supérieure Montreal and University Siegen 2023

NREL/SANDIA 5MW/61.5m Wind Turbine Reference Model using PowerFLOW

Part 2:

CFD-based optimization

21 N24 124 A

Option 1: CFD in the optimization loop

Drawbacks

- time consuming
- license cost
- automating the meshing, solving and evaluation is a challenge

→ alternative solution: replace CFD with CFD-trained metamodels

Option 2: CFD for generation of training data for a metamodel

Example 1: Axial fan optimization - Geometric parameters varied

Parameter		Range
Hub-to-tip ratio	V	0.3 - 0.7
Number of blades	Ζ	5 - 11
Chord-length ratio	c/D _{tip}	0.13 - 0.33
Blade sweep angle	δ	-60° - +60°

- Parameter variation by an optimized Latin Hypercube
- Automized and optimized CFD set up (RANS)
- Removing of non-phyical CFD results
- Selection of suitable metamodel types; here artificial neuronal network

Classic vs. neuronal-network based design

K. Bamberger, University Siegen 2015

Example 2: Centrifugal fan optimization - Experimental vs. neuronal-network based predicted performance

Final remark and references (I)

- The scheme presented is based on a data-driven model.
- It relies on training data collected somewhere and hence does not yield the physical reason for any of its results.
- The training data had been generated beforehand by CFD.
- Since CFD is still costly, the training data is not very *big* data.
- Naturally, the scheme is limited to a class of machines with certain geometric design features, the training data had been generated for; e.g. centrifugal impellers with 2D simple curved blades and a defined range of parameter values
- But: Within the range of the parameters used for generating the training data all combinations

of parameter values are possible \Rightarrow Fast and surprising results!

Bamberger, K., Carolus, T.: Development, Application, and Validation of a Quick Optimization Method for the Class of Axial Fans. ASME J. of Turbomachinery, Nov 2017, Vol. 139

Bamberger, K., Carolus, T., Belz, J., Nelles, O.: Development, Validation, and Application of an Optimization Scheme for Impellers of Centrifugal Fans Using Computational Fluid Dynamics-Trained Metamodels. ASME J. of Turbomachinery, Nov. 2020, Vol. 142

Part 3:

Quality of fan noise - Psychoacoustic methods

Fan Noise 50 40 L_p [dB] 30 10 10^{2} 80 $L_{p,1/3 octave}$ [dB] 60 40

Which sound is more pleasant?

K. Genuit, HEAD, "Subjektive" Beurteilung und "objektive" Analyse, ebm Innovationsforum 2013

Steinbeis-Transferzentrum FLOWTRANS

- It is well-known that the overall level and even the spectrum do not fully reflect the perception of fan noise by humans.
- The effect of sounds on humans can be viewed either from the perspective of annoyance or

in terms of a *product sound quality*, defined as the adequacy of a sound in relation to the product, BLAUERT and JEKOSCH 1997.

How to predict sound quality

C. Feldmann, University Siegen 2018

Steinbeis-Transferzentrum FLOWTRANS

Jury tests

- Jury test A: Participants are asked to <u>describe</u> a class of sounds (or sound sources, e.g. vacuum cleaners) via adjective scales.
- Jury test B: Participants are asked to <u>rate</u> sounds with the target to rate their product related sound quality.

No.	
1	completely disturbing - not disturbing at all
2	cannot be blanked out at all - can be blanked out completely
3	totally annoying - not annoying at all
4	unpleasant - pleasant
5	obtrusive - unobtrusive
6	completely humming - not humming at all
7	dark - light
8	completely roaring - not roaring at all
9	low - high
10	completely booming - not booming at all
11	heavy - light
12	completely fluctuating - not fluctuating at all
13	unsteady - steady
14	completely varying - not varying at all
15	moving - static
16	uneven - even
17	weak - strong
18	low performance - high performance
19	powerless - powerfull
20	completely hissing - not hissing at all
21	completely rustling - not rustling at all
22	completely whistling - not whistling at all
23	completely grinding - not grinding at all

Collection of adjective scales for characterizing the noise of fans and air handling units. (Feldmann 2019)

Psychoacoustic metrics

- In parallel, psychoacoustic metrics such as
 - loudness
 - sharpness
 - tonality
 - roughness, etc.

are derived from the objectively measured acoustic signatures of the sounds.

Psychoacoustic metric PERCEIVED LOUDNESS

- Can be calculated from any narrow band spectrum.
- Standardized according to DIN 45631.
- 1 sone is assigned to a sinusoidal tone of 1 kHz with 40 dB(SPL).

Psychoacoustic metrics FLUCTUATION INTENSITY and ROUGHNESS

- Measure of the amplitude and frequency modulations present in the sound
- If modulation frequency is very low: fluctuation strength in [vacil], otherwise: roughness in [asper]
- Determinable e.g. with the software ArtemiS Suite 5.1 from Head Acoustics

How to predict sound quality

 Eventually, the sound quality of a given sound is a linear combination of these psychoacoustic metrics:

Quality =
$$\sum_{j} k_{j} (j \text{ objective psychoacoustic metrics})$$

Their individual weights k_i are the results of the jury listening test.

Example: Jury assessment of three different fan sounds

Example

486 fans and devices with fans: Predicted sound quality *Q* from measured spectra

Feldmann, University Siegen 2019

Further reading

Part 4:

Open issues

42 N24 124 A

Part 4:

Open issues

2

Steinbeis-Transferzentrum FLOWTRANS

- Does simulation replace experiments, now, in the future,?
- What expertise is required to run meaningful and reliable numerical flow simulations?
- Integration of flow noise into the design process.
- High-fidelity aurealisation, a dream?
- Simulation of the complete system/device, not just the isolated fan performance.
- Thinking of innovative manufacturing methods for more exotic shapes (without neglecting structural health).
- How to keep the fundamental technical knowledge about the fluid mechanics of turbomachinery alive?
- •

Vielen Dank!

For further information contact

Steinbeis-Transferzentrum FLOWTRANS

Prof. Dr.-Ing. Thomas Carolus

Im Nassen 17 57250 Netphen Germany Fon: +49 (0)152 2861 9377 E-Mail: <u>thomas.carolus@stw.de</u>

www.flowtrans-engineering.com